Haskell and Category Theory

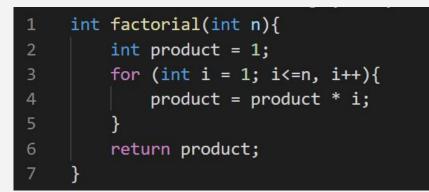
Structure

- Introduce Haskell
 - Contextualize
 - Language basics
- Haskell's type system
 - Category Hask
- Currying
- Language-level categorical constructs
 - Functors
 - Monoids
 - Monads

Haskell: Context

- "Conventional" program structure: Imperative
 - Java, C, Python...
 - Describe "how" program does something
 - \circ program is series of steps (control flow)
 - For loops, if/then...
- Alternative: Declarative
 - Functional languages typically declarative
 - Haskell
 - Describe logic but *don't* describe control flow
 - Functions, recursion...

Examples: Factorial



1	factorial	:: Int -> Int
2	factorial	1 = 1
3	factorial	<pre>n = n * factorial (n-1)</pre>

Haskell

- Declarative, functional language
 - "what" not "how"
 - Programs are collections of functions not sequences of steps
 - Higher-orderism: functions passed around as parameters/results
- Built from lambda calculus
 - Type theoretic system for specifying computation
- Known for mathematical formalism in underlying structure/language tools
 - Built *with* category theory, not *for* category theory
- Syntax notes:
 - Function application via space: *f r* not *f(r)*
 - Composition via periods: (f . g) x = f (g x)

Typing in Haskell - a quick, pragmatic view

Data

- Data type: set of values
 - Int: [-2^29...2^29 1]
 - String: [a-zA-Z...]*

Functions

- specifies types of function inputs/output (data)
 - Int -> String takes int, returns string
- typechecking: crucial for writing correct software
 - (f . g) x:
 - is x g's input type?
 - is g's result type f's input type?

Example type signatures

• Function typing: types of parameters, result

1 factorial :: Int -> Int 2 factorial 1 = 1 3 factorial n = n * factorial (n-1)

5 vectorScalar :: [Int] -> Int -> [Int] 6 vectorScalar vec c = [c*x | x <- vec]</pre>

Typing cont.

- Typeclasses
 - Groups of types that define specific behavior
 - \circ ex: types in Eq typeclass have to support '==' function
 - tests equality
 - \circ \quad types in Ord type class have to support ordinal comparisons
 - <, >, etc
 - Int? String?
- Algebraic data types
 - User created
 - associated with powerfully abstract type "groups" via typeclasses
- Type variables (generic types)
 - functions that don't require specific types use variables in place

Example: ==

Hask

Hask

- Categorical representation of Haskell's type system
- Ob(Hask): Haskell types (Int, String, [Int]...)
 - Don't care about values!
 - Int -> Int not 2 -> 3
- **Hask**(A, B): functions A -> B
 - Extensionally identified
 - I/O pairs same = same function
- Morphism composition: function composition

 \circ f.g = $x \rightarrow f(gx)$

Identities

Identity morphism for $A \in Hask$:

f :: A -> A

True or false: Since **Hask** doesn't care about values, only types, any function A -> A can be interpreted as A's identity morphism in **Hask**.

False - composition laws violated. Counterexample:

Let A = Int. Consider (+1) :: Int -> Int, (*2) :: Int -> Int.

If (+1) can be interpreted as the identity, $(*2) \cdot (+1) = (+1) \cdot (*2) = (*2)$

• Identity morphisms in **Hask: id** function

id :: A -> A

id x = x

- Parametric polymorphism
 - Type variable 'A' instead of concrete type: can be any element of Ob(Hask)
 - Too general to serve as identity morphism
- id instantiated with a concrete type (ex. Int -> Int) serves as identity morphism

"Platonic" Hask

- Implementation level details break underlying categorical structure
- "Platonic" Hask:
 - Category corresponding to subset of haskell
 - Types don't have "bottom" values
 - anything that makes a program state undefined: non-terminating loops, exceptions...
 - 'Undefined'
 - Lazy evaluation
- Removes implementation problems
 - gives **Hask** expected attributes/structures
 - Initial objects, terminal objects, products, coproducts
 - makes categoric features behave as their names suggest
 - Functor, Monad typeclasses

Hask: Initial objects

Requirement: $a \in \text{Hask}$ s.t. $\forall b \in \text{Hask}, \exists ! f :: a \rightarrow b$

11	data Empty
12	
13	f :: Empty -> r
14	fr = case r of {}

• Real **Hask**: Empty type can be "undefined" (a bottom value)

Hask: Terminal objects

Requirement: $a \in \text{Hask}$ s.t. $\forall b \in \text{Hask}, \exists ! g :: b \rightarrow a$

- (): unit type
 - both a type and a value
 - analogue of singleton set

15	data () = ()
16	
17	g :: r -> ()
18	g _ = ()

• again assuming no problems from "undefined"

Hask: Products

Requirement: ∀*f* :: *r* -> *a*, *g* :: *r* -> *b*

 $\exists ! u :: r \rightarrow product(a, b) \text{ s.t } \pi_1 . u = f, \pi_2 . u = g$

20	<pre>data (a,b) = (,) {fst :: a, snd :: b}</pre>
21	
22	u :: r -> (a,b)
23	u r = (f r, g r)

- $\pi_1 = fst :: (a, b) \to a$
- $\pi_2 = snd :: (a, b) -> b$

Hask: Coproducts

Requirement: $\forall f :: a \rightarrow r, g :: b \rightarrow r,$

$$\exists ! v :: coproduct(a,b) \rightarrow r \text{ s.t } (v \cdot i_1) = f, (v \cdot i_2) = g$$

26	data Either a b = Left a Right b
27	
28	v :: Either a b -> r
29	v (Left a) = f a
30	v (Right b) = g b

Hask: summary

- Categoric representation of Haskell's type system
 - Ob(Hask): types
 - Morphisms: functions between types
- (Platonic) Hask is Cartesian closed
 - 'Undefined' and other misbehaving constructs removed
 - \circ See online resources for more discussion

	Initial object	Terminal object	Products	Coproducts
Hask	X	X	X	X
Platonic Hask	data Empty	data () = ()	data (a,b) =	data Either a b = Left a Right b

Currying

Currying

- Haskell functions all take only one parameter under the hood
- We've seen multi-parameter functions:

- Currying: a clever trick
 - \circ *n*-ary function takes one parameter and returns an *(n-1)*-ary function
 - vectorScalar :: [Int] -> (Int -> [Int])
- Partial application: feeding *a* parameters to *n*-ary function returns (*n*-*a*)-ary function
 - Create functions on the fly
 - Generically defined top-level functions + partial application implicitly specifies huge range of functions
- Example: '+'
 - + :: Int -> Int -> Int
 - + 2 3 = 5
 - + 2 :: Int -> Int
 - (+2) 3 = 5

Currying: a categorical relationship

- All *n*-ary functions can be represented as chained 1-ary functions
 - Category theory connection?
- Adjunction
 - $\circ \quad \text{let } A, B, C \in \text{Hask}$

- Exponential objects: function types are types too
- Left adjoint: product functor, right adjoint: exponentiation functor

Categoric Typeclasses

Functor

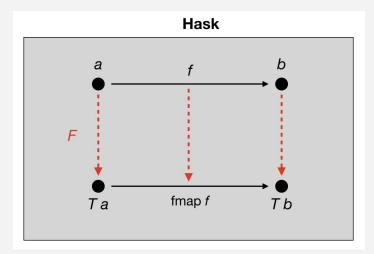
- Functor: typeclass (group of types)
 - \circ ~ a Functor is a container type that can be mapped over
 - list, tree...

32 ~ class Functor f where
33 fmap :: (a -> b) -> f a -> f b
34
35 fmapList :: (a -> b) -> [a] -> [b]

Prelude> fmap show [1,2,3] ["1","2","3"]

The Functor typeclass in Hask

- Instance *T* of Functor: endofunctor *F* on **Hask**
 - for $a \in Hask$, Fa = Ta
 - For *f* : *a* -> *b*, *F f* : *T a* -> *T b*



Monoid

- Hask: types and functions between types
- Structure within a type?
- Monoid typeclass
 - \circ \quad set with unit and associative binary operation

37	class Monoid m where
38	mempty :: m
39	<pre>mappend :: m -> m -> m</pre>
40	<pre>mconcat :: [m] -> m</pre>
41	<pre>mconcat = foldr mappend mempty</pre>

Monoid example

- simple monoid: List
 - Unit?
 - mempty = []
 - Binary op?
 - mappend a b = a ++ b

Prelude> mconcat [[1,2,3],[4,5,6],[7,8,9]] [1,2,3,4,5,6,7,8,9] Prelude>

Monads (the sparknotes)

- Category theoretic monad: triple (T, η , μ)
 - $\circ \quad T: C \to C \text{ (functor)}$
 - $\circ \qquad \eta: \ \mathbf{1}_{c} \to T \text{ (n. t.)}$
 - $\circ \qquad \mu: T^2 \to T \text{ (n. t.)}$

44	class Monad m where
45	return :: a -> m a
46	(>>=) :: m a -> (a -> m b) -> m b
47	
48	join :: Monad m => m (m a) -> m a
49	join $x = x >>= id$

- endofunctor *T* is *m* (*C* is **Hask**)
- η is return
- μ is join

Summary

- Haskell is an extremely elegant programming language
 - $\circ \qquad {\rm Design \ guided \ by \ category \ theory}$
 - Language-level constructs leverage powerful mathematical abstractions
- Most notable language heavily adopting PL theory -> category theory connection
 - Type system: Hask
 - Currying adjunction
 - Categoric typeclasses (Functor, Monad...)

Resources

- Learning Haskell
 - GHC Glasgow Haskell Compiler
 - Learn You A Haskell
- Category theory in Haskell
 - Bartosz Milewski's blog
 - Course website

Controversy

- "Hask is not a category" Andrej Bauer
 - Effectively describes how aspects of Haskell break the underlying categoric model
 - "People walk away from Haskell thinking they know some category theory where in fact they have not even seen a category yet"
 - "[I am objecting to] The fact that some people find it acceptable to defend broken mathematics on the grounds that it is useful. Non-broken mathematics is also useful, as well as correct. Good engineers do not rationalize broken math by saying "life is tough"."
- Is this relevant?
 - Haskell already notorious in CS world for being overly academic
 - CS breaks nice mathematical abstractions all the time
 - Understanding why Hask is not a category (*seq*, bottom values) takes more understanding of category theory than most Haskellers have/than is required for the abstraction to provide valuable insight/structure/rigor to their programming
 - "Category theory is a powerful enough substrate that even doing it wrongly adds a lot of utility" -Edward Kmett

Questions